Infrared Gas-phase Intensities and Gas-Crystal Frequency Shifts in Group IVB Hydrides

By D. C. MCKEAN

(Department of Chemistry, University of Aberdeen, Old Aberdeen)

In the light of recent discussion¹ of electronegativity values for the elements C, Si, Ge, and Pb, it is of especial interest to examine the infrared intensities of the vibration bands of Group IVB hydrides and the bond polar properties μ and $d\mu/dr$ which can be determined from them.

The intensities, Γ , of v_3 and v_4 of SnH₄ have now been measured in this laboratory, thereby extending previous work on CH4,2 SiH4,3 and GeH4.4,5 Of the two sets of values of μ and $d\mu/dr$ derived from the intensities (Table 1), set (2) is preferred on the grounds of the chemical resemblances

SnH₄ run nicely parallel to the electronegativities proposed for these elements,¹ for the direction here assumed (X-H).

A feature of the spectrum of SiH_4 is the considerable depression of both vibration frequencies

TABLE 1

	SnH_4 (1)	(2)	GeH_4	SiH4	CH4
v ₈ 1905·89†	$\Gamma_{3} 23.9 \pm 5\% d\mu/dr^{*} \pm 1.62$	± 1.70	± 1.38	± 1.23	± 0.61
$v_4 \sim 679$	$\Gamma_4 50.4 \pm 10\% \mu^* \pm 1.81$	± 1.63 0.96	$ \pm extsf{1\cdot21} \\ $	$ \pm extsf{1.58} \\ $	± 0.33 0.30
	Electronegativity (Ref. 1)	3	2.0	1.90	2.60

Units: Γ in cm.²/mmole, μ in D, $d\mu/dr$ in D/Å, ν in cm.⁻¹

* Normal co-ordinates from I. W. Levin and H. Ziffer, J. Chem. Phys., 1965, 43, 4023.

† G. R. Wilkinson, private communication.

between SiH_4 , GeH_4 , and SnH_4 : an experimental choice was not possible as no SiD_4 was available.

Inspection of Table 1 shows that it is possible to choose a set of values of $d\mu/dr$ which increase smoothly from CH₄ to SnH₄. This choice then entails a change in the sign of μ passing from CH₄ to SiH₄. The following interpretation may then be offered. The change in $d\mu/dr$ reflects primarily the change in polarizability of the central atom,

on change of phase from gas to crystal.⁶ The gas-crystal frequency shifts of GeH_4 and SnH_4 (Table 2) repeat this phenomenon, the shift Δv_4 for SnH_4 of 43 cm.⁻¹ (= 679 - 636 cm.⁻¹) being particularly high.

If the shift arises from dipole-dipole forces then the Haas-Ketelaar equation⁶ should apply:----

$$\Delta \mathbf{v}_{\mathbf{i}} = (n^2 + 2)\Gamma_{\mathbf{i}} N_{\mathbf{s}}/18\pi^2$$

		SiH4	GeH4	SnH_4	Units
Γ. (Gas)		13.9	14.3	23.9	cm.²/mmole
Δv_{\bullet} (Gas-crystal)*		13	19.7	25	cm1
Γ_{4} (Gas)	••	43.7	29.9	50.4	cm.²/mmole
Δy_{\bullet} (Gas-crystal)*		34	26.7	43	cm1

TABLE 2

* This shift measures the distance of the "centre of gravity" of the observed crystal band from the band centre in the gas.

which will increase along the series C, Si, Ge, Sn.

The direction of $d\mu/dr$ is taken to be X-H. The values of μ on the other hand are likely to reflect (a) the equilibrium bond moment, and hence the electronegativity difference between the atoms; and (b) the extent to which bonding electrons "follow" the bonding vibration. It seems plausible that the value and direction here chosen for

 μ_{CH} (C-H) results at least in part from factor (b). However the values of μ/r_e for SiH₄, GeH₄, and In the absence of refractive index data it can only be said that, qualitatively, the frequency shifts run parallel to the gas intensities. In particular, there is a different sequence of values for Γ_3 or $\Delta
u_{3}$ (Si < Ge < Sn) than is found for Γ_{4} or Δv_{4} (Ge < Si < Sn). It seems probable then that dipole-dipole forces are at least an important factor in determining the shifts.

(Received, February 10th, 1966; Com. 089.)

¹ A. L. Allred and E. G. Rochow, J. Inorg. Nuclear Chem., 1958, 5, 269.

- ³ D. F. Ball and D. C. McKean, Spectrochim. Acta, 1962, 18, 1019.
- ⁴ A. A. Chalmers and D. C. McKean, Spectrochim. Acta, 1965, 21, 1941. ⁵ I. W. Levin, J. Chem. Phys., 1965, 42, 1244.
- ⁶ D. F. Ball and D. C. McKean, Spectrochim. Acta, 1962, 18, 1029.

² J. Heicklen, Spectrochim. Acta, 1961, 17, 201.